Antiestrogen Resistant Cell Lines Expressing Estrogen Receptor α Mutations Upregulate the Unfolded Protein Response and are Killed by BHPI

نویسندگان

  • Chengjian Mao
  • Mara Livezey
  • Ji Eun Kim
  • David J. Shapiro
چکیده

Outgrowth of metastases expressing ERα mutations Y537S and D538G is common after endocrine therapy for estrogen receptor α (ERα) positive breast cancer. The effect of replacing wild type ERα in breast cancer cells with these mutations was unclear. We used the CRISPR-Cas9 genome editing system and homology directed repair to isolate and characterize 14 T47D cell lines in which ERαY537S or ERαD538G replace one or both wild-type ERα genes. In 2-dimensional, and in quantitative anchorage-independent 3-dimensional cell culture, ERαY537S and ERαD538G cells exhibited estrogen-independent growth. A progestin further increased their already substantial proliferation in micromolar 4-hydroxytamoxifen and fulvestrant/ICI 182,780 (ICI). Our recently described ERα biomodulator, BHPI, which hyperactivates the unfolded protein response (UPR), completely blocked proliferation. In ERαY537S and ERαD538G cells, estrogen-ERα target genes were constitutively active and partially antiestrogen resistant. The UPR marker sp-XBP1 was constitutively activated in ERαY537S cells and further induced by progesterone in both cell lines. UPR-regulated genes associated with tamoxifen resistance, including the oncogenic chaperone BiP/GRP78, were upregulated. ICI displayed a greater than 2 fold reduction in its ability to induce ERαY537S and ERαD538G degradation. Progestins, UPR activation and perhaps reduced ICI-stimulated ERα degradation likely contribute to antiestrogen resistance seen in ERαY537S and ERαD538G cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting multidrug-resistant ovarian cancer through estrogen receptor α dependent ATP depletion caused by hyperactivation of the unfolded protein response

Ovarian cancers often recur and tumors acquire resistance to chemotherapy due to overexpression of the ATP-dependent efflux pump, multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1). Nontoxic small molecule inhibitors targeting MDR1 have remained largely elusive. Instead, in a novel application of our recently described estrogen receptor α (ERα) biomodulator, BHPI, we targeted MDR1's sub...

متن کامل

Estrogen receptor α inhibitor activates the unfolded protein response, blocks protein synthesis, and induces tumor regression.

Recurrent estrogen receptor α (ERα)-positive breast and ovarian cancers are often therapy resistant. Using screening and functional validation, we identified BHPI, a potent noncompetitive small molecule ERα biomodulator that selectively blocks proliferation of drug-resistant ERα-positive breast and ovarian cancer cells. In a mouse xenograft model of breast cancer, BHPI induced rapid and substan...

متن کامل

Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness.

While more than 70% of breast cancers express estrogen receptor-α (ER+), endocrine therapies targeting these receptors often fail. The molecular mechanisms that underlie treatment resistance remain unclear. We investigated the potential role of glucose-regulated protein 78 (GRP78) in mediating estrogen resistance. Human breast tumors showed increased GRP78 expression when compared with normal b...

متن کامل

Estrogen receptor-α signaling and localization regulates autophagy and unfolded protein response activation in ER+ breast cancer.

Antiestrogen therapy is commonly used to treat estrogen receptor (ER)+ breast cancers but acquired and de novo resistance limits their overall curative potential. An endoplasmic reticulum stress pathway, the unfolded protein response, and autophagy are both implicated in the development of antiestrogen therapy resistance in estrogen receptor-α (ER) positive breast cancer. Thus, we recently inve...

متن کامل

Clusterin: a potential target for improving response to antiestrogens.

Antiestrogens represent the first line of therapy in the treatment of estrogen receptor-positive (ER+) breast cancer patients. Unfortunately, up to 40% of patients develop resistance associated with progression and frequently die for metastatic breast cancer. The molecular events leading to pharmacological resistance are not completely understood. We attempted to verify in an experimental model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016